1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
//
// Copyright 2020 Signal Messenger, LLC.
// SPDX-License-Identifier: AGPL-3.0-only
//

#![allow(non_snake_case)]

use curve25519_dalek_signal::ristretto::RistrettoPoint;
use lazy_static::lazy_static;
use partial_default::PartialDefault;
use serde::{Deserialize, Serialize};
use subtle::{ConditionallySelectable, ConstantTimeEq};
use zkcredential::attributes::Attribute;

use crate::common::errors::*;
use crate::common::sho::*;
use crate::crypto::uid_struct;

lazy_static! {
    static ref SYSTEM_PARAMS: SystemParams =
        crate::deserialize::<SystemParams>(&SystemParams::SYSTEM_HARDCODED).unwrap();
}

#[derive(Copy, Clone, PartialEq, Eq, Serialize, Deserialize, PartialDefault)]
pub struct SystemParams {
    pub(crate) G_a1: RistrettoPoint,
    pub(crate) G_a2: RistrettoPoint,
}

pub type KeyPair = zkcredential::attributes::KeyPair<UidEncryptionDomain>;
pub type PublicKey = zkcredential::attributes::PublicKey<UidEncryptionDomain>;
pub type Ciphertext = zkcredential::attributes::Ciphertext<UidEncryptionDomain>;

impl SystemParams {
    pub fn generate() -> Self {
        let mut sho = Sho::new(
            b"Signal_ZKGroup_20200424_Constant_UidEncryption_SystemParams_Generate",
            b"",
        );
        let G_a1 = sho.get_point();
        let G_a2 = sho.get_point();
        SystemParams { G_a1, G_a2 }
    }

    pub fn get_hardcoded() -> SystemParams {
        *SYSTEM_PARAMS
    }

    const SYSTEM_HARDCODED: [u8; 64] = [
        0xa6, 0x32, 0x4c, 0x36, 0x8d, 0xf7, 0x34, 0x69, 0x11, 0x47, 0x98, 0x13, 0x48, 0xb6, 0xe7,
        0xeb, 0x42, 0xc3, 0x30, 0x7e, 0x71, 0x1b, 0x6c, 0x7e, 0xcc, 0xd3, 0x3, 0x2d, 0x45, 0x69,
        0x3f, 0x5a, 0x4, 0x80, 0x13, 0x52, 0x5b, 0x76, 0x12, 0x4b, 0xf2, 0x64, 0xc, 0x5e, 0x93,
        0x69, 0xc7, 0x6e, 0xfb, 0xe8, 0xa, 0xba, 0x2a, 0x24, 0xaa, 0x5d, 0x8e, 0x18, 0xa9, 0x8e,
        0xba, 0x14, 0xf8, 0x37,
    ];
}

pub struct UidEncryptionDomain;
impl zkcredential::attributes::Domain for UidEncryptionDomain {
    type Attribute = uid_struct::UidStruct;

    const ID: &'static str = "Signal_ZKGroup_20230419_UidEncryption";

    fn G_a() -> [RistrettoPoint; 2] {
        let system = SystemParams::get_hardcoded();
        [system.G_a1, system.G_a2]
    }
}

impl UidEncryptionDomain {
    pub(crate) fn decrypt(
        key_pair: &KeyPair,
        ciphertext: &Ciphertext,
    ) -> Result<libsignal_core::ServiceId, ZkGroupVerificationFailure> {
        let M2 = key_pair
            .decrypt_to_second_point(ciphertext)
            .map_err(|_| ZkGroupVerificationFailure)?;
        match M2.lizard_decode::<sha2::Sha256>() {
            None => Err(ZkGroupVerificationFailure),
            Some(bytes) => {
                // We want to do a constant-time choice between the ACI and the PNI possibilities.
                // Only at the end do we do a normal branch to see if decryption succeeded,
                // and even then we don't want to expose whether we picked the ACI or the PNI.
                // So we store them both in an array, and index into it at the very end.
                // This isn't fully "data-oblivious"; only one service ID gets loaded from memory at
                // the end, and which one is data-dependent. But it is constant-time.
                let decoded_uuid = uuid::Uuid::from_bytes(bytes);
                let decoded_service_ids = [
                    libsignal_core::Aci::from(decoded_uuid).into(),
                    libsignal_core::Pni::from(decoded_uuid).into(),
                ];
                let decoded_aci = &decoded_service_ids[0];
                let decoded_pni = &decoded_service_ids[1];
                let aci_M1 = uid_struct::UidStruct::calc_M1(*decoded_aci);
                let pni_M1 = uid_struct::UidStruct::calc_M1(*decoded_pni);
                debug_assert!(aci_M1 != pni_M1);
                let decrypted_M1 = key_pair.a1.invert() * ciphertext.as_points()[0];
                let mut index = u8::MAX;
                index.conditional_assign(&0, decrypted_M1.ct_eq(&aci_M1));
                index.conditional_assign(&1, decrypted_M1.ct_eq(&pni_M1));
                decoded_service_ids
                    .get(index as usize)
                    .copied()
                    .ok_or(ZkGroupVerificationFailure)
            }
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::common::constants::*;

    #[test]
    fn test_uid_encryption() {
        let master_key = TEST_ARRAY_32;
        let mut sho = Sho::new(b"Test_Uid_Encryption", &master_key);

        //let system = SystemParams::generate();
        //println!("PARAMS = {:#x?}", bincode::serialize(&system));
        assert!(SystemParams::generate() == SystemParams::get_hardcoded());

        let key_pair = KeyPair::derive_from(sho.as_mut());

        // Test serialize of key_pair
        let key_pair_bytes = bincode::serialize(&key_pair).unwrap();
        match bincode::deserialize::<KeyPair>(&key_pair_bytes[0..key_pair_bytes.len() - 1]) {
            Err(_) => (),
            _ => unreachable!(),
        };
        let key_pair2: KeyPair = bincode::deserialize(&key_pair_bytes).unwrap();
        assert!(key_pair == key_pair2);

        let aci = libsignal_core::Aci::from_uuid_bytes(TEST_ARRAY_16);
        let uid = uid_struct::UidStruct::from_service_id(aci.into());
        let ciphertext = key_pair.encrypt(&uid);

        // Test serialize / deserialize of Ciphertext
        let ciphertext_bytes = bincode::serialize(&ciphertext).unwrap();
        assert!(ciphertext_bytes.len() == 64);
        let ciphertext2: Ciphertext = bincode::deserialize(&ciphertext_bytes).unwrap();
        assert!(ciphertext == ciphertext2);
        //println!("ciphertext_bytes = {:#x?}", ciphertext_bytes);
        assert!(
            ciphertext_bytes
                == vec![
                    0xf8, 0x9e, 0xe7, 0x70, 0x5a, 0x66, 0x3, 0x6b, 0x90, 0x8d, 0xb8, 0x84, 0x21,
                    0x1b, 0x77, 0x3a, 0xc5, 0x43, 0xee, 0x35, 0xc4, 0xa3, 0x8, 0x62, 0x20, 0xfc,
                    0x3e, 0x1e, 0x35, 0xb4, 0x23, 0x4c, 0xfa, 0x1d, 0x2e, 0xea, 0x2c, 0xc2, 0xf4,
                    0xb4, 0xc4, 0x2c, 0xff, 0x39, 0xa9, 0xdc, 0xeb, 0x57, 0x29, 0x3b, 0x5f, 0x87,
                    0x70, 0xca, 0x60, 0xf9, 0xe9, 0xb7, 0x44, 0x47, 0xbf, 0xd3, 0xbd, 0x3d,
                ]
        );

        let plaintext = UidEncryptionDomain::decrypt(&key_pair, &ciphertext2).unwrap();
        assert!(matches!(plaintext, libsignal_core::ServiceId::Aci(_)));
        assert!(uid_struct::UidStruct::from_service_id(plaintext) == uid);
    }

    #[test]
    fn test_pni_encryption() {
        let mut sho = Sho::new(b"Test_Pni_Encryption", &[]);
        let key_pair = KeyPair::derive_from(sho.as_mut());

        let pni = libsignal_core::Pni::from_uuid_bytes(TEST_ARRAY_16);
        let uid = uid_struct::UidStruct::from_service_id(pni.into());
        let ciphertext = key_pair.encrypt(&uid);

        // Test serialize / deserialize of Ciphertext
        let ciphertext_bytes = bincode::serialize(&ciphertext).unwrap();
        assert!(ciphertext_bytes.len() == 64);
        let ciphertext2: Ciphertext = bincode::deserialize(&ciphertext_bytes).unwrap();
        assert!(ciphertext == ciphertext2);

        let plaintext = UidEncryptionDomain::decrypt(&key_pair, &ciphertext2).unwrap();
        assert!(matches!(plaintext, libsignal_core::ServiceId::Pni(_)));
        assert!(uid_struct::UidStruct::from_service_id(plaintext) == uid);
    }
}