1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
//
// Copyright 2020-2022 Signal Messenger, LLC.
// SPDX-License-Identifier: AGPL-3.0-only
//
use std::ops::Range;
use std::time::SystemTime;
use aes_gcm_siv::aead::generic_array::typenum::Unsigned;
use aes_gcm_siv::{AeadInPlace, Aes256GcmSiv, KeyInit};
use arrayref::array_ref;
use indexmap::IndexMap;
use itertools::Itertools;
use prost::Message;
use proto::sealed_sender::unidentified_sender_message::message::Type as ProtoMessageType;
use rand::{CryptoRng, Rng};
use subtle::ConstantTimeEq;
use crate::{
crypto, curve, message_encrypt, proto, session_cipher, Aci, CiphertextMessageType, DeviceId,
Direction, IdentityKey, IdentityKeyPair, IdentityKeyStore, KeyPair, KyberPreKeyStore,
PreKeySignalMessage, PreKeyStore, PrivateKey, ProtocolAddress, PublicKey, Result, ServiceId,
ServiceIdFixedWidthBinaryBytes, SessionRecord, SessionStore, SignalMessage,
SignalProtocolError, SignedPreKeyStore, Timestamp,
};
#[derive(Debug, Clone)]
pub struct ServerCertificate {
serialized: Vec<u8>,
key_id: u32,
key: PublicKey,
certificate: Vec<u8>,
signature: Vec<u8>,
}
/*
0xDEADC357 is a server certificate ID which is used to test the
revocation logic. As of this writing, no prod server certificates have
been revoked. If one ever does, add its key ID here.
If a production server certificate is ever generated which collides
with this test certificate ID, Bad Things will happen.
*/
const REVOKED_SERVER_CERTIFICATE_KEY_IDS: &[u32] = &[0xDEADC357];
// Valid registration IDs fit in 14 bits.
// TODO: move this into a RegistrationId strong type.
const VALID_REGISTRATION_ID_MASK: u16 = 0x3FFF;
// TODO: validate this as part of constructing DeviceId.
const MAX_VALID_DEVICE_ID: u32 = 127;
impl ServerCertificate {
pub fn deserialize(data: &[u8]) -> Result<Self> {
let pb = proto::sealed_sender::ServerCertificate::decode(data)
.map_err(|_| SignalProtocolError::InvalidProtobufEncoding)?;
if pb.certificate.is_none() || pb.signature.is_none() {
return Err(SignalProtocolError::InvalidProtobufEncoding);
}
let certificate = pb
.certificate
.ok_or(SignalProtocolError::InvalidProtobufEncoding)?;
let signature = pb
.signature
.ok_or(SignalProtocolError::InvalidProtobufEncoding)?;
let certificate_data =
proto::sealed_sender::server_certificate::Certificate::decode(certificate.as_ref())
.map_err(|_| SignalProtocolError::InvalidProtobufEncoding)?;
let key = PublicKey::try_from(
&certificate_data
.key
.ok_or(SignalProtocolError::InvalidProtobufEncoding)?[..],
)?;
let key_id = certificate_data
.id
.ok_or(SignalProtocolError::InvalidProtobufEncoding)?;
Ok(Self {
serialized: data.to_vec(),
certificate,
signature,
key,
key_id,
})
}
pub fn new<R: Rng + CryptoRng>(
key_id: u32,
key: PublicKey,
trust_root: &PrivateKey,
rng: &mut R,
) -> Result<Self> {
let certificate_pb = proto::sealed_sender::server_certificate::Certificate {
id: Some(key_id),
key: Some(key.serialize().to_vec()),
};
let certificate = certificate_pb.encode_to_vec();
let signature = trust_root.calculate_signature(&certificate, rng)?.to_vec();
let serialized = proto::sealed_sender::ServerCertificate {
certificate: Some(certificate.clone()),
signature: Some(signature.clone()),
}
.encode_to_vec();
Ok(Self {
serialized,
certificate,
signature,
key,
key_id,
})
}
pub(crate) fn to_protobuf(&self) -> Result<proto::sealed_sender::ServerCertificate> {
Ok(proto::sealed_sender::ServerCertificate {
certificate: Some(self.certificate.clone()),
signature: Some(self.signature.clone()),
})
}
pub fn validate(&self, trust_root: &PublicKey) -> Result<bool> {
if REVOKED_SERVER_CERTIFICATE_KEY_IDS.contains(&self.key_id()?) {
log::error!(
"received server certificate with revoked ID {:x}",
self.key_id()?
);
return Ok(false);
}
trust_root.verify_signature(&self.certificate, &self.signature)
}
pub fn key_id(&self) -> Result<u32> {
Ok(self.key_id)
}
pub fn public_key(&self) -> Result<PublicKey> {
Ok(self.key)
}
pub fn certificate(&self) -> Result<&[u8]> {
Ok(&self.certificate)
}
pub fn signature(&self) -> Result<&[u8]> {
Ok(&self.signature)
}
pub fn serialized(&self) -> Result<&[u8]> {
Ok(&self.serialized)
}
}
#[derive(Debug, Clone)]
pub struct SenderCertificate {
signer: ServerCertificate,
key: PublicKey,
sender_device_id: DeviceId,
sender_uuid: String,
sender_e164: Option<String>,
expiration: Timestamp,
serialized: Vec<u8>,
certificate: Vec<u8>,
signature: Vec<u8>,
}
impl SenderCertificate {
pub fn deserialize(data: &[u8]) -> Result<Self> {
let pb = proto::sealed_sender::SenderCertificate::decode(data)
.map_err(|_| SignalProtocolError::InvalidProtobufEncoding)?;
let certificate = pb
.certificate
.ok_or(SignalProtocolError::InvalidProtobufEncoding)?;
let signature = pb
.signature
.ok_or(SignalProtocolError::InvalidProtobufEncoding)?;
let certificate_data =
proto::sealed_sender::sender_certificate::Certificate::decode(certificate.as_ref())
.map_err(|_| SignalProtocolError::InvalidProtobufEncoding)?;
let sender_device_id: DeviceId = certificate_data
.sender_device
.ok_or(SignalProtocolError::InvalidProtobufEncoding)?
.into();
let expiration = certificate_data
.expires
.map(Timestamp::from_epoch_millis)
.ok_or(SignalProtocolError::InvalidProtobufEncoding)?;
let signer_pb = certificate_data
.signer
.ok_or(SignalProtocolError::InvalidProtobufEncoding)?;
let sender_uuid = certificate_data
.sender_uuid
.ok_or(SignalProtocolError::InvalidProtobufEncoding)?;
let sender_e164 = certificate_data.sender_e164;
let key = PublicKey::try_from(
&certificate_data
.identity_key
.ok_or(SignalProtocolError::InvalidProtobufEncoding)?[..],
)?;
let signer_bits = signer_pb.encode_to_vec();
let signer = ServerCertificate::deserialize(&signer_bits)?;
Ok(Self {
signer,
key,
sender_device_id,
sender_uuid,
sender_e164,
expiration,
serialized: data.to_vec(),
certificate,
signature,
})
}
pub fn new<R: Rng + CryptoRng>(
sender_uuid: String,
sender_e164: Option<String>,
key: PublicKey,
sender_device_id: DeviceId,
expiration: Timestamp,
signer: ServerCertificate,
signer_key: &PrivateKey,
rng: &mut R,
) -> Result<Self> {
let certificate_pb = proto::sealed_sender::sender_certificate::Certificate {
sender_uuid: Some(sender_uuid.clone()),
sender_e164: sender_e164.clone(),
sender_device: Some(sender_device_id.into()),
expires: Some(expiration.epoch_millis()),
identity_key: Some(key.serialize().to_vec()),
signer: Some(signer.to_protobuf()?),
};
let certificate = certificate_pb.encode_to_vec();
let signature = signer_key.calculate_signature(&certificate, rng)?.to_vec();
let serialized = proto::sealed_sender::SenderCertificate {
certificate: Some(certificate.clone()),
signature: Some(signature.clone()),
}
.encode_to_vec();
Ok(Self {
signer,
key,
sender_device_id,
sender_uuid,
sender_e164,
expiration,
serialized,
certificate,
signature,
})
}
pub fn validate(&self, trust_root: &PublicKey, validation_time: Timestamp) -> Result<bool> {
if !self.signer.validate(trust_root)? {
log::error!(
"sender certificate contained server certificate that wasn't signed by trust root"
);
return Ok(false);
}
if !self
.signer
.public_key()?
.verify_signature(&self.certificate, &self.signature)?
{
log::error!("sender certificate not signed by server");
return Ok(false);
}
if validation_time > self.expiration {
log::error!(
"sender certificate is expired (expiration: {}, validation_time: {})",
self.expiration.epoch_millis(),
validation_time.epoch_millis()
);
return Ok(false);
}
Ok(true)
}
pub fn signer(&self) -> Result<&ServerCertificate> {
Ok(&self.signer)
}
pub fn key(&self) -> Result<PublicKey> {
Ok(self.key)
}
pub fn sender_device_id(&self) -> Result<DeviceId> {
Ok(self.sender_device_id)
}
pub fn sender_uuid(&self) -> Result<&str> {
Ok(&self.sender_uuid)
}
pub fn sender_e164(&self) -> Result<Option<&str>> {
Ok(self.sender_e164.as_deref())
}
pub fn expiration(&self) -> Result<Timestamp> {
Ok(self.expiration)
}
pub fn serialized(&self) -> Result<&[u8]> {
Ok(&self.serialized)
}
pub fn certificate(&self) -> Result<&[u8]> {
Ok(&self.certificate)
}
pub fn signature(&self) -> Result<&[u8]> {
Ok(&self.signature)
}
}
impl From<ProtoMessageType> for CiphertextMessageType {
fn from(message_type: ProtoMessageType) -> Self {
let result = match message_type {
ProtoMessageType::Message => Self::Whisper,
ProtoMessageType::PrekeyMessage => Self::PreKey,
ProtoMessageType::SenderkeyMessage => Self::SenderKey,
ProtoMessageType::PlaintextContent => Self::Plaintext,
};
// Keep raw values in sync from now on, for efficient codegen.
assert!(result == Self::PreKey || message_type as i32 == result as i32);
result
}
}
impl From<CiphertextMessageType> for ProtoMessageType {
fn from(message_type: CiphertextMessageType) -> Self {
let result = match message_type {
CiphertextMessageType::PreKey => Self::PrekeyMessage,
CiphertextMessageType::Whisper => Self::Message,
CiphertextMessageType::SenderKey => Self::SenderkeyMessage,
CiphertextMessageType::Plaintext => Self::PlaintextContent,
};
// Keep raw values in sync from now on, for efficient codegen.
assert!(result == Self::PrekeyMessage || message_type as i32 == result as i32);
result
}
}
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum ContentHint {
Default,
Resendable,
Implicit,
Unknown(u32),
}
impl ContentHint {
fn to_proto(self) -> Option<i32> {
if self == ContentHint::Default {
None
} else {
Some(u32::from(self) as i32)
}
}
pub const fn to_u32(self) -> u32 {
use proto::sealed_sender::unidentified_sender_message::message::ContentHint as ProtoContentHint;
match self {
ContentHint::Default => 0,
ContentHint::Resendable => ProtoContentHint::Resendable as u32,
ContentHint::Implicit => ProtoContentHint::Implicit as u32,
ContentHint::Unknown(value) => value,
}
}
}
impl From<u32> for ContentHint {
fn from(raw_value: u32) -> Self {
use proto::sealed_sender::unidentified_sender_message::message::ContentHint as ProtoContentHint;
assert!(!ProtoContentHint::is_valid(0));
match ProtoContentHint::try_from(raw_value as i32) {
Err(_) if raw_value == 0 => ContentHint::Default,
Err(_) => ContentHint::Unknown(raw_value),
Ok(ProtoContentHint::Resendable) => ContentHint::Resendable,
Ok(ProtoContentHint::Implicit) => ContentHint::Implicit,
}
}
}
impl From<ContentHint> for u32 {
fn from(hint: ContentHint) -> Self {
hint.to_u32()
}
}
pub struct UnidentifiedSenderMessageContent {
serialized: Vec<u8>,
contents: Vec<u8>,
sender: SenderCertificate,
msg_type: CiphertextMessageType,
content_hint: ContentHint,
group_id: Option<Vec<u8>>,
}
impl UnidentifiedSenderMessageContent {
pub fn deserialize(data: &[u8]) -> Result<Self> {
let pb = proto::sealed_sender::unidentified_sender_message::Message::decode(data)
.map_err(|_| SignalProtocolError::InvalidProtobufEncoding)?;
let msg_type = pb
.r#type
.and_then(|t| ProtoMessageType::try_from(t).ok())
.map(CiphertextMessageType::from)
.ok_or(SignalProtocolError::InvalidProtobufEncoding)?;
let sender = pb
.sender_certificate
.ok_or(SignalProtocolError::InvalidProtobufEncoding)?;
let contents = pb
.content
.ok_or(SignalProtocolError::InvalidProtobufEncoding)?;
let content_hint = pb
.content_hint
.map(|raw| ContentHint::from(raw as u32))
.unwrap_or(ContentHint::Default);
let group_id = pb.group_id;
let sender = SenderCertificate::deserialize(&sender)?;
let serialized = data.to_vec();
log::info!(
"deserialized UnidentifiedSenderMessageContent from {}.{} with type {:?}",
sender.sender_uuid()?,
sender.sender_device_id()?,
msg_type,
);
Ok(Self {
serialized,
contents,
sender,
msg_type,
content_hint,
group_id,
})
}
pub fn new(
msg_type: CiphertextMessageType,
sender: SenderCertificate,
contents: Vec<u8>,
content_hint: ContentHint,
group_id: Option<Vec<u8>>,
) -> Result<Self> {
let proto_msg_type = ProtoMessageType::from(msg_type);
let msg = proto::sealed_sender::unidentified_sender_message::Message {
content: Some(contents.clone()),
r#type: Some(proto_msg_type.into()),
sender_certificate: Some(sender.serialized()?.to_vec()),
content_hint: content_hint.to_proto(),
group_id: group_id.as_ref().and_then(|buf| {
if buf.is_empty() {
None
} else {
Some(buf.clone())
}
}),
};
let serialized = msg.encode_to_vec();
Ok(Self {
serialized,
msg_type,
sender,
contents,
content_hint,
group_id,
})
}
pub fn msg_type(&self) -> Result<CiphertextMessageType> {
Ok(self.msg_type)
}
pub fn sender(&self) -> Result<&SenderCertificate> {
Ok(&self.sender)
}
pub fn contents(&self) -> Result<&[u8]> {
Ok(&self.contents)
}
pub fn content_hint(&self) -> Result<ContentHint> {
Ok(self.content_hint)
}
pub fn group_id(&self) -> Result<Option<&[u8]>> {
Ok(self.group_id.as_deref())
}
pub fn serialized(&self) -> Result<&[u8]> {
Ok(&self.serialized)
}
}
enum UnidentifiedSenderMessage {
V1 {
ephemeral_public: PublicKey,
encrypted_static: Vec<u8>,
encrypted_message: Vec<u8>,
},
V2 {
ephemeral_public: PublicKey,
encrypted_message_key: Box<[u8]>,
authentication_tag: Box<[u8]>,
encrypted_message: Box<[u8]>,
},
}
const SEALED_SENDER_V1_MAJOR_VERSION: u8 = 1;
const SEALED_SENDER_V1_FULL_VERSION: u8 = 0x11;
const SEALED_SENDER_V2_MAJOR_VERSION: u8 = 2;
const SEALED_SENDER_V2_UUID_FULL_VERSION: u8 = 0x22;
const SEALED_SENDER_V2_SERVICE_ID_FULL_VERSION: u8 = 0x23;
impl UnidentifiedSenderMessage {
fn deserialize(data: &[u8]) -> Result<Self> {
if data.is_empty() {
return Err(SignalProtocolError::InvalidSealedSenderMessage(
"Message was empty".to_owned(),
));
}
let version = data[0] >> 4;
log::debug!(
"deserializing UnidentifiedSenderMessage with version {}",
version
);
match version {
0 | SEALED_SENDER_V1_MAJOR_VERSION => {
// XXX should we really be accepted version == 0 here?
let pb = proto::sealed_sender::UnidentifiedSenderMessage::decode(&data[1..])
.map_err(|_| SignalProtocolError::InvalidProtobufEncoding)?;
let ephemeral_public = pb
.ephemeral_public
.ok_or(SignalProtocolError::InvalidProtobufEncoding)?;
let encrypted_static = pb
.encrypted_static
.ok_or(SignalProtocolError::InvalidProtobufEncoding)?;
let encrypted_message = pb
.encrypted_message
.ok_or(SignalProtocolError::InvalidProtobufEncoding)?;
let ephemeral_public = PublicKey::try_from(&ephemeral_public[..])?;
Ok(Self::V1 {
ephemeral_public,
encrypted_static,
encrypted_message,
})
}
SEALED_SENDER_V2_MAJOR_VERSION => {
// Uses a flat representation: C || AT || E.pub || ciphertext
let remaining = &data[1..];
if remaining.len()
< sealed_sender_v2::MESSAGE_KEY_LEN
+ sealed_sender_v2::AUTH_TAG_LEN
+ curve::curve25519::PUBLIC_KEY_LENGTH
{
return Err(SignalProtocolError::InvalidProtobufEncoding);
}
let (encrypted_message_key, remaining) =
remaining.split_at(sealed_sender_v2::MESSAGE_KEY_LEN);
let (encrypted_authentication_tag, remaining) =
remaining.split_at(sealed_sender_v2::AUTH_TAG_LEN);
let (ephemeral_public, encrypted_message) =
remaining.split_at(curve::curve25519::PUBLIC_KEY_LENGTH);
Ok(Self::V2 {
ephemeral_public: PublicKey::from_djb_public_key_bytes(ephemeral_public)?,
encrypted_message_key: encrypted_message_key.into(),
authentication_tag: encrypted_authentication_tag.into(),
encrypted_message: encrypted_message.into(),
})
}
_ => Err(SignalProtocolError::UnknownSealedSenderVersion(version)),
}
}
}
mod sealed_sender_v1 {
#[cfg(test)]
use std::fmt;
use super::*;
/// A symmetric cipher key and a MAC key, along with a "chain key" consumed in
/// [`StaticKeys::calculate`].
pub(super) struct EphemeralKeys {
pub(super) chain_key: [u8; 32],
pub(super) cipher_key: [u8; 32],
pub(super) mac_key: [u8; 32],
}
const SALT_PREFIX: &[u8] = b"UnidentifiedDelivery";
const EPHEMERAL_KEYS_KDF_LEN: usize = 96;
impl EphemeralKeys {
/// Derive a set of symmetric keys from the key agreement between the sender and
/// recipient's identities.
pub(super) fn calculate(
our_keys: &KeyPair,
their_public: &PublicKey,
direction: Direction,
) -> Result<Self> {
let our_pub_key = our_keys.public_key.serialize();
let their_pub_key = their_public.serialize();
let ephemeral_salt = match direction {
Direction::Sending => [SALT_PREFIX, &their_pub_key, &our_pub_key],
Direction::Receiving => [SALT_PREFIX, &our_pub_key, &their_pub_key],
}
.concat();
let shared_secret = our_keys.private_key.calculate_agreement(their_public)?;
let mut derived_values = [0; EPHEMERAL_KEYS_KDF_LEN];
hkdf::Hkdf::<sha2::Sha256>::new(Some(&ephemeral_salt), &shared_secret)
.expand(&[], &mut derived_values)
.expect("valid output length");
Ok(Self {
chain_key: *array_ref![&derived_values, 0, 32],
cipher_key: *array_ref![&derived_values, 32, 32],
mac_key: *array_ref![&derived_values, 64, 32],
})
}
}
#[cfg(test)]
impl PartialEq for EphemeralKeys {
fn eq(&self, other: &Self) -> bool {
self.chain_key == other.chain_key
&& self.cipher_key == other.cipher_key
&& self.mac_key == other.mac_key
}
}
#[cfg(test)]
impl Eq for EphemeralKeys {}
#[cfg(test)]
impl fmt::Debug for EphemeralKeys {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(
f,
"EphemeralKeys {{ chain_key: {:?}, cipher_key: {:?}, mac_key: {:?} }}",
self.chain_key, self.cipher_key, self.mac_key
)
}
}
/// A symmetric cipher key and a MAC key.
pub(super) struct StaticKeys {
pub(super) cipher_key: [u8; 32],
pub(super) mac_key: [u8; 32],
}
impl StaticKeys {
/// Derive a set of symmetric keys from the agreement between the sender and
/// recipient's identities, as well as [`EphemeralKeys::chain_key`].
pub(super) fn calculate(
our_keys: &IdentityKeyPair,
their_key: &PublicKey,
chain_key: &[u8; 32],
ctext: &[u8],
) -> Result<Self> {
let salt = [chain_key, ctext].concat();
let shared_secret = our_keys.private_key().calculate_agreement(their_key)?;
// 96 bytes are derived, but the first 32 are discarded/unused. This is intended to
// mirror the way the EphemeralKeys are derived, even though StaticKeys does not end up
// requiring a third "chain key".
let mut derived_values = [0; 96];
hkdf::Hkdf::<sha2::Sha256>::new(Some(&salt), &shared_secret)
.expand(&[], &mut derived_values)
.expect("valid output length");
Ok(Self {
cipher_key: *array_ref![&derived_values, 32, 32],
mac_key: *array_ref![&derived_values, 64, 32],
})
}
}
#[test]
fn test_agreement_and_authentication() -> Result<()> {
// The sender and recipient each have a long-term identity key pair.
let sender_identity = IdentityKeyPair::generate(&mut rand::thread_rng());
let recipient_identity = IdentityKeyPair::generate(&mut rand::thread_rng());
// Generate an ephemeral key pair.
let sender_ephemeral = KeyPair::generate(&mut rand::thread_rng());
let ephemeral_public = sender_ephemeral.public_key;
// Generate ephemeral cipher, chain, and MAC keys.
let sender_eph_keys = EphemeralKeys::calculate(
&sender_ephemeral,
recipient_identity.public_key(),
Direction::Sending,
)?;
// Encrypt the sender's public key with AES-256 CTR and a MAC.
let sender_static_key_ctext = crypto::aes256_ctr_hmacsha256_encrypt(
&sender_identity.public_key().serialize(),
&sender_eph_keys.cipher_key,
&sender_eph_keys.mac_key,
)
.expect("just generated these keys, they should be correct");
// Generate another cipher and MAC key.
let sender_static_keys = StaticKeys::calculate(
&sender_identity,
recipient_identity.public_key(),
&sender_eph_keys.chain_key,
&sender_static_key_ctext,
)?;
let sender_message_contents = b"this is a binary message";
let sender_message_data = crypto::aes256_ctr_hmacsha256_encrypt(
sender_message_contents,
&sender_static_keys.cipher_key,
&sender_static_keys.mac_key,
)
.expect("just generated these keys, they should be correct");
// The message recipient calculates the ephemeral key and the sender's public key.
let recipient_eph_keys = EphemeralKeys::calculate(
&recipient_identity.into(),
&ephemeral_public,
Direction::Receiving,
)?;
assert_eq!(sender_eph_keys, recipient_eph_keys);
let recipient_message_key_bytes = crypto::aes256_ctr_hmacsha256_decrypt(
&sender_static_key_ctext,
&recipient_eph_keys.cipher_key,
&recipient_eph_keys.mac_key,
)
.expect("should decrypt successfully");
let sender_public_key: PublicKey = PublicKey::try_from(&recipient_message_key_bytes[..])?;
assert_eq!(sender_identity.public_key(), &sender_public_key);
let recipient_static_keys = StaticKeys::calculate(
&recipient_identity,
&sender_public_key,
&recipient_eph_keys.chain_key,
&sender_static_key_ctext,
)?;
let recipient_message_contents = crypto::aes256_ctr_hmacsha256_decrypt(
&sender_message_data,
&recipient_static_keys.cipher_key,
&recipient_static_keys.mac_key,
)
.expect("should decrypt successfully");
assert_eq!(recipient_message_contents, sender_message_contents);
Ok(())
}
}
/// Encrypt the plaintext message `ptext`, generate an [`UnidentifiedSenderMessageContent`], then
/// pass the result to [`sealed_sender_encrypt_from_usmc`].
///
/// This is a simple way to encrypt a message in a 1:1 using [Sealed Sender v1].
///
/// [Sealed Sender v1]: sealed_sender_encrypt_from_usmc
pub async fn sealed_sender_encrypt<R: Rng + CryptoRng>(
destination: &ProtocolAddress,
sender_cert: &SenderCertificate,
ptext: &[u8],
session_store: &mut dyn SessionStore,
identity_store: &mut dyn IdentityKeyStore,
now: SystemTime,
rng: &mut R,
) -> Result<Vec<u8>> {
let message = message_encrypt(ptext, destination, session_store, identity_store, now).await?;
let usmc = UnidentifiedSenderMessageContent::new(
message.message_type(),
sender_cert.clone(),
message.serialize().to_vec(),
ContentHint::Default,
None,
)?;
sealed_sender_encrypt_from_usmc(destination, &usmc, identity_store, rng).await
}
/// This method implements the single-key single-recipient [KEM] described in [this Signal blog
/// post], a.k.a. Sealed Sender v1.
///
/// [KEM]: https://en.wikipedia.org/wiki/Key_encapsulation
/// [this Signal blog post]: https://signal.org/blog/sealed-sender/
///
/// [`sealed_sender_decrypt`] is used in the client to decrypt the Sealed Sender message produced by
/// this method.
///
/// # Contrast with Sealed Sender v2
/// The *single-recipient* KEM scheme implemented by this method partially derives the encryption
/// key from the recipient's identity key, which would then require re-encrypting the same message
/// multiple times to send to multiple recipients. In contrast,
/// [Sealed Sender v2](sealed_sender_multi_recipient_encrypt) uses a *multi-recipient* KEM scheme
/// which avoids this repeated work, but makes a few additional design tradeoffs.
///
/// # High-level algorithmic overview
/// The KEM scheme implemented by this method is described in [this Signal blog post]. The
/// high-level steps of this process are listed below:
/// 1. Generate a random key pair.
/// 2. Derive a symmetric chain key, cipher key, and MAC key from the recipient's public key and the
/// sender's public/private key pair.
/// 3. Symmetrically encrypt the sender's public key using the cipher key and MAC key from (2) with
/// AES-256 in CTR mode.
/// 4. Derive a second symmetric cipher key and MAC key from the sender's private key, the
/// recipient's public key, and the chain key from (2).
/// 5. Symmetrically encrypt the underlying [`UnidentifiedSenderMessageContent`] using the cipher key
/// and MAC key from (4) with AES-256 in CTR mode.
/// 6. Send the ephemeral public key from (1) and the encrypted public key from (3) to the
/// recipient, along with the encrypted message (5).
///
/// ## Pseudocode
///```text
/// e_pub, e_priv = X25519.generateEphemeral()
/// e_chain, e_cipherKey, e_macKey = HKDF(salt="UnidentifiedDelivery" || recipientIdentityPublic || e_pub, ikm=ECDH(recipientIdentityPublic, e_priv), info="")
/// e_ciphertext = AES_CTR(key=e_cipherKey, input=senderIdentityPublic)
/// e_mac = Hmac256(key=e_macKey, input=e_ciphertext)
///
/// s_cipherKey, s_macKey = HKDF(salt=e_chain || e_ciphertext || e_mac, ikm=ECDH(recipientIdentityPublic, senderIdentityPrivate), info="")
/// s_ciphertext = AES_CTR(key=s_cipherKey, input=sender_certificate || message_ciphertext)
/// s_mac = Hmac256(key=s_macKey, input=s_ciphertext)
///
/// message_to_send = s_ciphertext || s_mac
///```
///
/// # Wire Format
/// The output of this method is encoded as an `UnidentifiedSenderMessage.Message` from
/// `sealed_sender.proto`, prepended with an additional byte to indicate the version of Sealed
/// Sender in use (see [further documentation on the version
/// byte](sealed_sender_multi_recipient_encrypt#the-version-byte)).
pub async fn sealed_sender_encrypt_from_usmc<R: Rng + CryptoRng>(
destination: &ProtocolAddress,
usmc: &UnidentifiedSenderMessageContent,
identity_store: &dyn IdentityKeyStore,
rng: &mut R,
) -> Result<Vec<u8>> {
let our_identity = identity_store.get_identity_key_pair().await?;
let their_identity = identity_store
.get_identity(destination)
.await?
.ok_or_else(|| SignalProtocolError::SessionNotFound(destination.clone()))?;
let ephemeral = KeyPair::generate(rng);
let eph_keys = sealed_sender_v1::EphemeralKeys::calculate(
&ephemeral,
their_identity.public_key(),
Direction::Sending,
)?;
let static_key_ctext = crypto::aes256_ctr_hmacsha256_encrypt(
&our_identity.public_key().serialize(),
&eph_keys.cipher_key,
&eph_keys.mac_key,
)
.expect("just generated these keys, they should be correct");
let static_keys = sealed_sender_v1::StaticKeys::calculate(
&our_identity,
their_identity.public_key(),
&eph_keys.chain_key,
&static_key_ctext,
)?;
let message_data = crypto::aes256_ctr_hmacsha256_encrypt(
usmc.serialized()?,
&static_keys.cipher_key,
&static_keys.mac_key,
)
.expect("just generated these keys, they should be correct");
let mut serialized = vec![SEALED_SENDER_V1_FULL_VERSION];
let pb = proto::sealed_sender::UnidentifiedSenderMessage {
ephemeral_public: Some(ephemeral.public_key.serialize().to_vec()),
encrypted_static: Some(static_key_ctext),
encrypted_message: Some(message_data),
};
pb.encode(&mut serialized)
.expect("can always append to Vec");
Ok(serialized)
}
mod sealed_sender_v2 {
use super::*;
// Static byte strings used as part of a MAC in HKDF.
const LABEL_R: &[u8] = b"Sealed Sender v2: r (2023-08)";
const LABEL_K: &[u8] = b"Sealed Sender v2: K";
const LABEL_DH: &[u8] = b"Sealed Sender v2: DH";
const LABEL_DH_S: &[u8] = b"Sealed Sender v2: DH-sender";
pub const MESSAGE_KEY_LEN: usize = 32;
pub const CIPHER_KEY_LEN: usize =
<Aes256GcmSiv as aes_gcm_siv::aead::KeySizeUser>::KeySize::USIZE;
pub const AUTH_TAG_LEN: usize = 16;
/// An asymmetric and a symmetric cipher key.
pub(super) struct DerivedKeys {
kdf: hkdf::Hkdf<sha2::Sha256>,
}
impl DerivedKeys {
/// Initialize from a slice of random bytes `m`.
pub(super) fn new(m: &[u8]) -> DerivedKeys {
Self {
kdf: hkdf::Hkdf::<sha2::Sha256>::new(None, m),
}
}
/// Derive the ephemeral asymmetric keys.
pub(super) fn derive_e(&self) -> KeyPair {
let mut r = [0; 32];
self.kdf
.expand(LABEL_R, &mut r)
.expect("valid output length");
let e = PrivateKey::try_from(&r[..]).expect("valid PrivateKey");
KeyPair::try_from(e).expect("can derive public key")
}
/// Derive the symmetric cipher key.
pub(super) fn derive_k(&self) -> [u8; CIPHER_KEY_LEN] {
let mut k = [0; CIPHER_KEY_LEN];
self.kdf
.expand(LABEL_K, &mut k)
.expect("valid output length");
k
}
}
/// Encrypt or decrypt a slice of random bytes `input` using a shared secret derived from
/// `our_keys` and `their_key`.
///
/// The output of this method when called with [`Direction::Sending`] can be inverted to produce
/// the original `input` bytes if called with [`Direction::Receiving`] with `our_keys` and
/// `their_key` swapped.
pub(super) fn apply_agreement_xor(
our_keys: &KeyPair,
their_key: &PublicKey,
direction: Direction,
input: &[u8; MESSAGE_KEY_LEN],
) -> Result<[u8; MESSAGE_KEY_LEN]> {
let agreement = our_keys.calculate_agreement(their_key)?;
let agreement_key_input = match direction {
Direction::Sending => [
agreement,
our_keys.public_key.serialize(),
their_key.serialize(),
],
Direction::Receiving => [
agreement,
their_key.serialize(),
our_keys.public_key.serialize(),
],
}
.concat();
let mut result = [0; MESSAGE_KEY_LEN];
hkdf::Hkdf::<sha2::Sha256>::new(None, &agreement_key_input)
.expand(LABEL_DH, &mut result)
.expect("valid output length");
result
.iter_mut()
.zip(input)
.for_each(|(result_byte, input_byte)| *result_byte ^= input_byte);
Ok(result)
}
/// Compute an [authentication tag] for the bytes `encrypted_message_key` using a shared secret
/// derived from `our_keys` and `their_key`.
///
/// [authentication tag]: https://en.wikipedia.org/wiki/Message_authentication_code
///
/// The output of this method with [`Direction::Sending`] should be the same bytes produced by
/// calling this method with [`Direction::Receiving`] with `our_keys` and `their_key`
/// swapped, if `ephemeral_pub_key` and `encrypted_message_key` are the same.
pub(super) fn compute_authentication_tag(
our_keys: &IdentityKeyPair,
their_key: &IdentityKey,
direction: Direction,
ephemeral_pub_key: &PublicKey,
encrypted_message_key: &[u8; MESSAGE_KEY_LEN],
) -> Result<[u8; AUTH_TAG_LEN]> {
let agreement = our_keys
.private_key()
.calculate_agreement(their_key.public_key())?;
let mut agreement_key_input = agreement.into_vec();
agreement_key_input.extend_from_slice(&ephemeral_pub_key.serialize());
agreement_key_input.extend_from_slice(encrypted_message_key);
match direction {
Direction::Sending => {
agreement_key_input.extend_from_slice(&our_keys.public_key().serialize());
agreement_key_input.extend_from_slice(&their_key.serialize());
}
Direction::Receiving => {
agreement_key_input.extend_from_slice(&their_key.serialize());
agreement_key_input.extend_from_slice(&our_keys.public_key().serialize());
}
}
let mut result = [0; AUTH_TAG_LEN];
hkdf::Hkdf::<sha2::Sha256>::new(None, &agreement_key_input)
.expand(LABEL_DH_S, &mut result)
.expect("valid output length");
Ok(result)
}
#[test]
fn test_agreement_and_authentication() -> Result<()> {
// The sender and recipient each have a long-term identity key pair.
let sender_identity = IdentityKeyPair::generate(&mut rand::thread_rng());
let recipient_identity = IdentityKeyPair::generate(&mut rand::thread_rng());
// Generate random bytes used for our multi-recipient encoding scheme.
let m: [u8; MESSAGE_KEY_LEN] = rand::thread_rng().gen();
// Derive an ephemeral key pair from those random bytes.
let ephemeral_keys = DerivedKeys::new(&m);
let e = ephemeral_keys.derive_e();
// Encrypt the ephemeral key pair.
let sender_c_0: [u8; MESSAGE_KEY_LEN] =
apply_agreement_xor(&e, recipient_identity.public_key(), Direction::Sending, &m)?;
// Compute an authentication tag for the encrypted key pair.
let sender_at_0 = compute_authentication_tag(
&sender_identity,
recipient_identity.identity_key(),
Direction::Sending,
&e.public_key,
&sender_c_0,
)?;
// The message recipient calculates the original random bytes and authenticates the result.
let recv_m = apply_agreement_xor(
&recipient_identity.into(),
&e.public_key,
Direction::Receiving,
&sender_c_0,
)?;
assert_eq!(&recv_m, &m);
let recv_at_0 = compute_authentication_tag(
&recipient_identity,
sender_identity.identity_key(),
Direction::Receiving,
&e.public_key,
&sender_c_0,
)?;
assert_eq!(&recv_at_0, &sender_at_0);
Ok(())
}
}
/// This method implements a single-key multi-recipient [KEM] as defined in Manuel Barbosa's
/// ["Randomness Reuse: Extensions and Improvements"], a.k.a. Sealed Sender v2.
///
/// [KEM]: https://en.wikipedia.org/wiki/Key_encapsulation
/// ["Randomness Reuse: Extensions and Improvements"]: https://haslab.uminho.pt/mbb/files/reuse.pdf
///
/// # Contrast with Sealed Sender v1
/// The KEM scheme implemented by this method uses the "Generic Construction" in `4.1` of [Barbosa's
/// paper]["Randomness Reuse: Extensions and Improvements"], instantiated with [ElGamal encryption].
/// This technique enables reusing a single sequence of random bytes across multiple messages with
/// the same content, which reduces computation time for clients sending the same message to
/// multiple recipients (without compromising the message security).
///
/// There are a few additional design tradeoffs this method makes vs [Sealed Sender v1] which may
/// make it comparatively unwieldy for certain scenarios:
/// 1. it requires a [`SessionRecord`] to exist already for the recipient, i.e. that a Double
/// Ratchet message chain has previously been established in the [`SessionStore`] via
/// [`process_prekey_bundle`][crate::process_prekey_bundle] after an initial
/// [`PreKeySignalMessage`] is received.
/// 2. it ferries a lot of additional information in its encoding which makes the resulting message
/// bulkier than the message produced by [Sealed Sender v1]. For sending, this will generally
/// still be more compact than sending the same message N times, but on the receiver side the
/// message is slightly larger.
/// 3. unlike other message types sent over the wire, the encoded message returned by this method
/// does not use protobuf, in order to avoid inefficiencies produced by protobuf's packing (see
/// **[Wire Format]**).
///
/// [ElGamal encryption]: https://en.wikipedia.org/wiki/ElGamal_encryption
/// [Sealed Sender v1]: sealed_sender_encrypt_from_usmc
/// [Wire Format]: #wire-format
///
/// # High-level algorithmic overview
/// The high-level steps of this process are summarized below:
/// 1. Generate a series of random bytes.
/// 2. Derive an ephemeral key pair from (1).
/// 3. *Once per recipient:* Encrypt (1) using a shared secret derived from the private ephemeral
/// key (2) and the recipient's public identity key.
/// 4. *Once per recipient:* Add an authentication tag for (3) using a secret derived from the
/// sender's private identity key and the recipient's public identity key.
/// 5. Generate a symmetric key from (1) and use it to symmetrically encrypt the underlying
/// [`UnidentifiedSenderMessageContent`] via [AEAD encryption]. *This step is only performed once
/// per message, regardless of the number of recipients.*
/// 6. Send the public ephemeral key (2) to the server, along with the sequence of encrypted random
/// bytes (3) and authentication tags (4), and the single encrypted message (5).
///
/// [AEAD encryption]:
/// https://en.wikipedia.org/wiki/Authenticated_encryption#Authenticated_encryption_with_associated_data_(AEAD)
///
/// ## Pseudocode
///```text
/// ENCRYPT(message, R_i):
/// M = Random(32)
/// r = KDF(label_r, M, len=32)
/// K = KDF(label_K, M, len=32)
/// E = DeriveKeyPair(r)
/// for i in num_recipients:
/// C_i = KDF(label_DH, DH(E, R_i) || E.public || R_i.public, len=32) XOR M
/// AT_i = KDF(label_DH_s, DH(S, R_i) || E.public || C_i || S.public || R_i.public, len=16)
/// ciphertext = AEAD_Encrypt(K, message)
/// return E.public, C_i, AT_i, ciphertext
///
/// DECRYPT(E.public, C, AT, ciphertext):
/// M = KDF(label_DH, DH(E, R) || E.public || R.public, len=32) xor C
/// r = KDF(label_r, M, len=32)
/// K = KDF(label_K, M, len=32)
/// E' = DeriveKeyPair(r)
/// if E.public != E'.public:
/// return DecryptionError
/// message = AEAD_Decrypt(K, ciphertext) // includes S.public
/// AT' = KDF(label_DH_s, DH(S, R) || E.public || C || S.public || R.public, len=16)
/// if AT != AT':
/// return DecryptionError
/// return message
///```
///
/// # Routing messages to recipients
///
/// The server will split up the set of messages and securely route each individual [received
/// message][receiving] to its intended recipient. [`SealedSenderV2SentMessage`] can perform this
/// fan-out operation.
///
/// # Wire Format
/// Multi-recipient sealed-sender does not use protobufs for its payload format. Instead, it uses a
/// flat format marked with a [version byte](#the-version-byte). The format is different for
/// [sending] and [receiving]. The decrypted content is a protobuf-encoded
/// `UnidentifiedSenderMessage.Message` from `sealed_sender.proto`.
///
/// The public key used in Sealed Sender v2 is always a Curve25519 DJB key.
///
/// [sending]: #sent-messages
/// [receiving]: #received-messages
///
/// ## The version byte
///
/// Sealed sender messages (v1 and v2) in serialized form begin with a version [byte][u8]. This byte
/// has the form:
///
/// ```text
/// (requiredVersion << 4) | currentVersion
/// ```
///
/// v1 messages thus have a version byte of `0x11`. v2 messages have a version byte of `0x22` or
/// `0x23`. A hypothetical version byte `0x34` would indicate a message encoded as Sealed Sender v4,
/// but decodable by any client that supports Sealed Sender v3.
///
/// ## Received messages
///
/// ```text
/// ReceivedMessage {
/// version_byte: u8,
/// c: [u8; 32],
/// at: [u8; 16],
/// e_pub: [u8; 32],
/// message: [u8] // remaining bytes
/// }
/// ```
///
/// Each individual Sealed Sender message received from the server is decoded in the Signal client
/// by calling [`sealed_sender_decrypt`].
///
/// ## Sent messages
///
/// ```text
/// SentMessage {
/// version_byte: u8,
/// count: varint,
/// recipients: [PerRecipientData | ExcludedRecipient; count],
/// e_pub: [u8; 32],
/// message: [u8] // remaining bytes
/// }
///
/// PerRecipientData {
/// recipient: Recipient,
/// devices: [DeviceList], // last element's has_more = 0
/// c: [u8; 32],
/// at: [u8; 16],
/// }
///
/// ExcludedRecipient {
/// recipient: Recipient,
/// no_devices_marker: u8 = 0, // never a valid device ID
/// }
///
/// DeviceList {
/// device_id: u8,
/// has_more: u1, // high bit of following field
/// unused: u1, // high bit of following field
/// registration_id: u14,
/// }
///
/// Recipient {
/// service_id_fixed_width_binary: [u8; 17],
/// }
/// ```
///
/// The varint encoding used is the same as [protobuf's][varint]. Values are unsigned.
/// Fixed-width-binary encoding is used for the [ServiceId] values.
/// Fixed-width integers are unaligned and in network byte order (big-endian).
///
/// [varint]: https://developers.google.com/protocol-buffers/docs/encoding#varints
pub async fn sealed_sender_multi_recipient_encrypt<
R: Rng + CryptoRng,
X: IntoIterator<Item = ServiceId>,
>(
destinations: &[&ProtocolAddress],
destination_sessions: &[&SessionRecord],
excluded_recipients: X,
usmc: &UnidentifiedSenderMessageContent,
identity_store: &dyn IdentityKeyStore,
rng: &mut R,
) -> Result<Vec<u8>>
where
X::IntoIter: ExactSizeIterator,
{
sealed_sender_multi_recipient_encrypt_impl(
destinations,
destination_sessions,
excluded_recipients,
usmc,
identity_store,
rng,
)
.await
}
async fn sealed_sender_multi_recipient_encrypt_impl<
R: Rng + CryptoRng,
X: IntoIterator<Item = ServiceId>,
>(
destinations: &[&ProtocolAddress],
destination_sessions: &[&SessionRecord],
excluded_recipients: X,
usmc: &UnidentifiedSenderMessageContent,
identity_store: &dyn IdentityKeyStore,
rng: &mut R,
) -> Result<Vec<u8>>
where
X::IntoIter: ExactSizeIterator,
{
if destinations.len() != destination_sessions.len() {
return Err(SignalProtocolError::InvalidArgument(
"must have the same number of destination sessions as addresses".to_string(),
));
}
let excluded_recipients = excluded_recipients.into_iter();
let our_identity = identity_store.get_identity_key_pair().await?;
let m: [u8; sealed_sender_v2::MESSAGE_KEY_LEN] = rng.gen();
let keys = sealed_sender_v2::DerivedKeys::new(&m);
let e = keys.derive_e();
let e_pub = &e.public_key;
// Encrypt the shared ciphertext using AES-GCM-SIV.
let ciphertext = {
let mut ciphertext = usmc.serialized()?.to_vec();
let symmetric_authentication_tag = Aes256GcmSiv::new(&keys.derive_k().into())
.encrypt_in_place_detached(
// There's no nonce because the key is already one-use.
&aes_gcm_siv::Nonce::default(),
// And there's no associated data.
&[],
&mut ciphertext,
)
.expect("AES-GCM-SIV encryption should not fail with a just-computed key");
// AES-GCM-SIV expects the authentication tag to be at the end of the ciphertext
// when decrypting.
ciphertext.extend_from_slice(&symmetric_authentication_tag);
ciphertext
};
// Group the destinations by name, and fetch identity keys once for each name. This optimizes
// for the common case where all of a recipient's devices are included contiguously in the
// destination list. (If the caller *doesn't* do this, that's on them; the message will still be
// valid but some key material will be redundantly computed and encoded in the output.)
let identity_keys_and_ranges: Vec<(IdentityKey, Range<usize>)> = {
let mut identity_keys_and_ranges = vec![];
for (_, mut next_group) in &destinations
.iter()
.enumerate()
.chunk_by(|(_i, next)| next.name())
{
let (i, &destination) = next_group
.next()
.expect("at least one element in every group");
// We can't put this before the call to `next()` because `count` consumes the rest of
// the iterator.
let count = 1 + next_group.count();
let their_identity =
identity_store
.get_identity(destination)
.await?
.ok_or_else(|| {
log::error!("missing identity key for {}", destination);
// Returned as a SessionNotFound error because (a) we don't have an identity
// error that includes the address, and (b) re-establishing the session should
// re-fetch the identity.
SignalProtocolError::SessionNotFound(destination.clone())
})?;
identity_keys_and_ranges.push((their_identity, i..i + count));
}
identity_keys_and_ranges
};
// Next, fan out the work of generating the per-recipient to multiple cores, since we do two key
// agreements per recipient (though not per device) and those are CPU-bound.
// I know this looks complicated enough to pull out into a separate function altogether, but it
// also depends on a bunch of local state: our identity, E and E_pub, and M.
let serialize_recipient_destinations_into = |serialized: &mut Vec<u8>,
destinations: &[&ProtocolAddress],
sessions: &[&SessionRecord],
their_identity: &IdentityKey|
-> Result<()> {
let their_service_id = ServiceId::parse_from_service_id_string(destinations[0].name())
.ok_or_else(|| {
SignalProtocolError::InvalidArgument(format!(
"multi-recipient sealed sender requires recipients' ServiceId (not {})",
destinations[0].name()
))
})?;
serialized.extend_from_slice(&their_service_id.service_id_fixed_width_binary());
debug_assert_eq!(
destinations.len(),
sessions.len(),
"should be sliced with the same range"
);
let mut destinations_and_sessions = destinations.iter().zip(sessions);
while let Some((&destination, session)) = destinations_and_sessions.next() {
let their_registration_id = session.remote_registration_id().map_err(|_| {
SignalProtocolError::InvalidState(
"sealed_sender_multi_recipient_encrypt",
format!(
concat!(
"cannot get registration ID from session with {} ",
"(maybe it was recently archived)"
),
destination
),
)
})?;
if their_registration_id & u32::from(VALID_REGISTRATION_ID_MASK)
!= their_registration_id
{
return Err(SignalProtocolError::InvalidRegistrationId(
destination.clone(),
their_registration_id,
));
}
let mut their_registration_id =
u16::try_from(their_registration_id).expect("just checked range");
if destinations_and_sessions.len() > 0 {
their_registration_id |= 0x8000;
}
let device_id: u32 = destination.device_id().into();
if device_id == 0 || device_id > MAX_VALID_DEVICE_ID {
return Err(SignalProtocolError::InvalidState(
"sealed_sender_multi_recipient_encrypt",
format!("destination {destination} has invalid device ID"),
));
}
serialized.push(device_id.try_into().expect("just checked range"));
serialized.extend_from_slice(&their_registration_id.to_be_bytes());
}
let c_i = sealed_sender_v2::apply_agreement_xor(
&e,
their_identity.public_key(),
Direction::Sending,
&m,
)?;
serialized.extend_from_slice(&c_i);
let at_i = sealed_sender_v2::compute_authentication_tag(
&our_identity,
their_identity,
Direction::Sending,
e_pub,
&c_i,
)?;
serialized.extend_from_slice(&at_i);
Ok(())
};
let process_chunk =
|serialized: &mut Vec<u8>, chunk: &[(IdentityKey, Range<usize>)]| -> Result<()> {
for (their_identity, destination_range) in chunk {
let these_destinations = &destinations[destination_range.clone()];
let these_sessions = &destination_sessions[destination_range.clone()];
serialize_recipient_destinations_into(
serialized,
these_destinations,
these_sessions,
their_identity,
)?;
}
Ok(())
};
let mut serialized: Vec<u8> = vec![SEALED_SENDER_V2_SERVICE_ID_FULL_VERSION];
let count_of_recipients = identity_keys_and_ranges.len() + excluded_recipients.len();
prost::encode_length_delimiter(count_of_recipients, &mut serialized)
.expect("can always resize a Vec");
// Fan out to N threads, like Rayon would. But don't bother for less than 6 items.
let parallelism = std::thread::available_parallelism()
.map(usize::from)
.unwrap_or(1);
let chunk_size = std::cmp::max(
6,
crate::utils::div_ceil(identity_keys_and_ranges.len(), parallelism),
);
if parallelism == 1 || chunk_size >= identity_keys_and_ranges.len() {
process_chunk(&mut serialized, &identity_keys_and_ranges)?;
} else {
let mut chunks = identity_keys_and_ranges.chunks(chunk_size);
// We'll process the first chunk on the current thread once we've spawned all the others.
let first_chunk = chunks.next().expect("at least one chunk, tested above");
let mut all_outputs = Vec::new();
all_outputs.resize_with(chunks.len(), || Ok(vec![]));
rayon::scope(|scope| -> Result<()> {
let mut outputs = &mut all_outputs[..];
for chunk in chunks {
let (next_output, remaining_outputs) = outputs
.split_first_mut()
.expect("as many outputs as remaining chunks");
scope.spawn(|_| {
let mut serialized = vec![];
*next_output = process_chunk(&mut serialized, chunk).map(|_| serialized);
});
outputs = remaining_outputs;
}
process_chunk(&mut serialized, first_chunk)
})?;
for output in all_outputs {
serialized.extend(output?);
}
}
for excluded in excluded_recipients {
serialized.extend_from_slice(&excluded.service_id_fixed_width_binary());
serialized.push(0);
}
serialized.extend_from_slice(e_pub.public_key_bytes()?);
serialized.extend_from_slice(&ciphertext);
Ok(serialized)
}
/// Represents a single recipient in an SSv2 SentMessage.
///
/// See [`SealedSenderV2SentMessage`].
pub struct SealedSenderV2SentMessageRecipient<'a> {
/// The recipient's devices and their registration IDs. May be empty.
pub devices: Vec<(DeviceId, u16)>,
/// A concatenation of the `C_i` and `AT_i` SSv2 fields for this recipient, or an empty slice if
/// the recipient has no devices.
c_and_at: &'a [u8],
}
/// A parsed representation of a Sealed Sender v2 SentMessage.
///
/// This only parses enough to fan out the message as a series of ReceivedMessages.
pub struct SealedSenderV2SentMessage<'a> {
/// The full message, for calculating offsets.
full_message: &'a [u8],
/// The version byte at the head of the message.
pub version: u8,
/// The parsed list of recipients, grouped by ServiceId.
///
/// The map is ordered by when a recipient first appears in the full message, even if they
/// appear again later with more devices. This makes iteration over the full set of recipients
/// deterministic.
pub recipients: IndexMap<ServiceId, SealedSenderV2SentMessageRecipient<'a>>,
/// A concatenation of the `e_pub` and `message` SSv2 fields for this recipient.
shared_bytes: &'a [u8],
}
impl<'a> SealedSenderV2SentMessage<'a> {
/// Parses the message, or produces an error if the message is invalid.
pub fn parse(data: &'a [u8]) -> Result<Self> {
if data.is_empty() {
return Err(SignalProtocolError::InvalidSealedSenderMessage(
"Message was empty".to_owned(),
));
}
let version = data[0];
if !matches!(
version,
SEALED_SENDER_V2_UUID_FULL_VERSION | SEALED_SENDER_V2_SERVICE_ID_FULL_VERSION
) {
return Err(SignalProtocolError::UnknownSealedSenderVersion(version));
}
fn advance<'a, const N: usize>(buf: &mut &'a [u8]) -> Result<&'a [u8; N]> {
if N > buf.len() {
return Err(SignalProtocolError::InvalidProtobufEncoding);
}
// TODO: Replace with split_array_ref or split_first_chunk when stabilized.
let (prefix, remaining) = buf.split_at(N);
*buf = remaining;
Ok(prefix.try_into().expect("checked length"))
}
fn decode_varint(buf: &mut &[u8]) -> Result<u32> {
let result: usize = prost::decode_length_delimiter(*buf)
.map_err(|_| SignalProtocolError::InvalidProtobufEncoding)?;
*buf = &buf[prost::length_delimiter_len(result)..];
result
.try_into()
.map_err(|_| SignalProtocolError::InvalidProtobufEncoding)
}
let mut remaining = &data[1..];
let recipient_count = decode_varint(&mut remaining)?
.try_into()
.unwrap_or(usize::MAX);
// Cap our preallocated capacity; anything higher than this is *probably* a mistake, but
// could just be a very large message.
// (Callers can of course refuse to process messages with too many recipients.)
let mut recipients: IndexMap<ServiceId, SealedSenderV2SentMessageRecipient<'a>> =
IndexMap::with_capacity(std::cmp::min(recipient_count as usize, 6000));
for _ in 0..recipient_count {
let service_id = if version == SEALED_SENDER_V2_UUID_FULL_VERSION {
// The original version of SSv2 assumed ACIs here, and only encoded the raw UUID.
ServiceId::from(Aci::from_uuid_bytes(*advance::<
{ std::mem::size_of::<uuid::Bytes>() },
>(&mut remaining)?))
} else {
ServiceId::parse_from_service_id_fixed_width_binary(advance::<
{ std::mem::size_of::<ServiceIdFixedWidthBinaryBytes>() },
>(
&mut remaining
)?)
.ok_or(SignalProtocolError::InvalidProtobufEncoding)?
};
let mut devices = Vec::new();
loop {
let device_id: u32 = advance::<1>(&mut remaining)?[0].into();
if device_id == 0 {
if !devices.is_empty() {
return Err(SignalProtocolError::InvalidProtobufEncoding);
}
break;
}
if device_id > MAX_VALID_DEVICE_ID {
return Err(SignalProtocolError::InvalidProtobufEncoding);
}
let registration_id_and_has_more =
u16::from_be_bytes(*advance::<2>(&mut remaining)?);
devices.push((
device_id.into(),
registration_id_and_has_more & VALID_REGISTRATION_ID_MASK,
));
let has_more = (registration_id_and_has_more & 0x8000) != 0;
if !has_more {
break;
}
}
let c_and_at: &[u8] = if devices.is_empty() {
&[]
} else {
advance::<{ sealed_sender_v2::MESSAGE_KEY_LEN + sealed_sender_v2::AUTH_TAG_LEN }>(
&mut remaining,
)?
};
match recipients.entry(service_id) {
indexmap::map::Entry::Occupied(mut existing) => {
if existing.get().devices.is_empty() || devices.is_empty() {
return Err(SignalProtocolError::InvalidSealedSenderMessage(
"recipient redundantly encoded as empty".to_owned(),
));
}
// We don't unique the recipient devices; the server is going to check this
// against the account's canonical list of devices anyway.
existing.get_mut().devices.extend(devices);
// Note that we don't check that c_and_at matches. Any case where it doesn't
// match would already result in a decryption error for at least one of the
// recipient's devices, though.
}
indexmap::map::Entry::Vacant(entry) => {
entry.insert(SealedSenderV2SentMessageRecipient { devices, c_and_at });
}
};
}
if remaining.len() < curve::curve25519::PUBLIC_KEY_LENGTH {
return Err(SignalProtocolError::InvalidProtobufEncoding);
}
Ok(Self {
full_message: data,
version,
recipients,
shared_bytes: remaining,
})
}
/// Returns a slice of slices that, when concatenated, form the ReceivedMessage appropriate for
/// `recipient`.
///
/// If `recipient` is not one of the recipients in `self`, the resulting message will not be
/// decryptable.
#[inline]
pub fn received_message_parts_for_recipient(
&self,
recipient: &SealedSenderV2SentMessageRecipient<'a>,
) -> impl AsRef<[&[u8]]> {
// Why not use `IntoIterator<Item = &[u8]>` as the result? Because the `concat` method on
// slices is more efficient when the caller just wants a `Vec<u8>`.
// Why use SEALED_SENDER_V2_UUID_FULL_VERSION as the version? Because the ReceivedMessage
// format hasn't changed since then.
[
&[SEALED_SENDER_V2_UUID_FULL_VERSION],
recipient.c_and_at,
self.shared_bytes,
]
}
/// Returns the offset of `addr` within `self.full_message`, or `None` if `addr` does not lie
/// within `self.full_message`.
///
/// A stripped-down version of [a dormant Rust RFC][subslice-offset].
///
/// [subslice-offset]: https://github.com/rust-lang/rfcs/pull/2796
#[inline]
fn offset_within_full_message(&self, addr: *const u8) -> Option<usize> {
// Arithmetic on addresses is valid for offsets within a byte array.
// If addr < start, we'll wrap around to a very large value, which will be out of range just
// like if addr > end.
let offset = (addr as usize).wrapping_sub(self.full_message.as_ptr() as usize);
// We *do* want to allow the "one-past-the-end" offset here, because the offset might be
// used as part of a range (e.g. 0..end).
if offset <= self.full_message.len() {
debug_assert!(
offset == self.full_message.len() || std::ptr::eq(&self.full_message[offset], addr)
);
Some(offset)
} else {
None
}
}
/// Returns the range within the full message of `recipient`'s user-specific key material.
///
/// This can be concatenated as `[version, recipient_key_material, shared_bytes]` to produce a
/// valid SSv2 ReceivedMessage, the payload delivered to recipients.
///
/// **Panics** if `recipient` is not one of the recipients in `self`.
pub fn range_for_recipient_key_material(
&self,
recipient: &SealedSenderV2SentMessageRecipient<'a>,
) -> Range<usize> {
if recipient.c_and_at.is_empty() {
return 0..0;
}
let offset = self
.offset_within_full_message(recipient.c_and_at.as_ptr())
.expect("'recipient' is not one of the recipients in this SealedSenderV2SentMessage");
let end_offset = offset.saturating_add(recipient.c_and_at.len());
assert!(
end_offset <= self.full_message.len(),
"invalid 'recipient' passed to range_for_recipient_key_material"
);
offset..end_offset
}
/// Returns the offset of the shared bytes within the full message.
///
/// This can be concatenated as `[version, recipient_key_material, shared_bytes]` to produce a
/// valid SSv2 ReceivedMessage, the payload delivered to recipients.
pub fn offset_of_shared_bytes(&self) -> usize {
debug_assert_eq!(
self.full_message.as_ptr_range().end,
self.shared_bytes.as_ptr_range().end,
"SealedSenderV2SentMessage parsed incorrectly"
);
self.offset_within_full_message(self.shared_bytes.as_ptr())
.expect("constructed correctly")
}
}
/// Decrypt the payload of a sealed-sender message in either the v1 or v2 format.
///
/// [`sealed_sender_decrypt`] consumes the output of this method to validate the sender's identity
/// before decrypting the underlying message.
pub async fn sealed_sender_decrypt_to_usmc(
ciphertext: &[u8],
identity_store: &dyn IdentityKeyStore,
) -> Result<UnidentifiedSenderMessageContent> {
let our_identity = identity_store.get_identity_key_pair().await?;
match UnidentifiedSenderMessage::deserialize(ciphertext)? {
UnidentifiedSenderMessage::V1 {
ephemeral_public,
encrypted_static,
encrypted_message,
} => {
let eph_keys = sealed_sender_v1::EphemeralKeys::calculate(
&our_identity.into(),
&ephemeral_public,
Direction::Receiving,
)?;
let message_key_bytes = match crypto::aes256_ctr_hmacsha256_decrypt(
&encrypted_static,
&eph_keys.cipher_key,
&eph_keys.mac_key,
) {
Ok(plaintext) => plaintext,
Err(crypto::DecryptionError::BadKeyOrIv) => {
unreachable!("just derived these keys; they should be valid");
}
Err(crypto::DecryptionError::BadCiphertext(msg)) => {
log::error!("failed to decrypt sealed sender v1 message key: {}", msg);
return Err(SignalProtocolError::InvalidSealedSenderMessage(
"failed to decrypt sealed sender v1 message key".to_owned(),
));
}
};
let static_key = PublicKey::try_from(&message_key_bytes[..])?;
let static_keys = sealed_sender_v1::StaticKeys::calculate(
&our_identity,
&static_key,
&eph_keys.chain_key,
&encrypted_static,
)?;
let message_bytes = match crypto::aes256_ctr_hmacsha256_decrypt(
&encrypted_message,
&static_keys.cipher_key,
&static_keys.mac_key,
) {
Ok(plaintext) => plaintext,
Err(crypto::DecryptionError::BadKeyOrIv) => {
unreachable!("just derived these keys; they should be valid");
}
Err(crypto::DecryptionError::BadCiphertext(msg)) => {
log::error!(
"failed to decrypt sealed sender v1 message contents: {}",
msg
);
return Err(SignalProtocolError::InvalidSealedSenderMessage(
"failed to decrypt sealed sender v1 message contents".to_owned(),
));
}
};
let usmc = UnidentifiedSenderMessageContent::deserialize(&message_bytes)?;
if !bool::from(message_key_bytes.ct_eq(&usmc.sender()?.key()?.serialize())) {
return Err(SignalProtocolError::InvalidSealedSenderMessage(
"sender certificate key does not match message key".to_string(),
));
}
Ok(usmc)
}
UnidentifiedSenderMessage::V2 {
ephemeral_public,
encrypted_message_key,
authentication_tag,
encrypted_message,
} => {
let encrypted_message_key: [u8; sealed_sender_v2::MESSAGE_KEY_LEN] =
encrypted_message_key.as_ref().try_into().map_err(|_| {
SignalProtocolError::InvalidSealedSenderMessage(format!(
"encrypted message key had incorrect length {} (should be {})",
encrypted_message_key.len(),
sealed_sender_v2::MESSAGE_KEY_LEN
))
})?;
let m = sealed_sender_v2::apply_agreement_xor(
&our_identity.into(),
&ephemeral_public,
Direction::Receiving,
&encrypted_message_key,
)?;
let keys = sealed_sender_v2::DerivedKeys::new(&m);
if !bool::from(keys.derive_e().public_key.ct_eq(&ephemeral_public)) {
return Err(SignalProtocolError::InvalidSealedSenderMessage(
"derived ephemeral key did not match key provided in message".to_string(),
));
}
let mut message_bytes = encrypted_message.into_vec();
Aes256GcmSiv::new(&keys.derive_k().into())
.decrypt_in_place(
// There's no nonce because the key is already one-use.
&aes_gcm_siv::Nonce::default(),
// And there's no associated data.
&[],
&mut message_bytes,
)
.map_err(|err| {
SignalProtocolError::InvalidSealedSenderMessage(format!(
"failed to decrypt inner message: {}",
err
))
})?;
let usmc = UnidentifiedSenderMessageContent::deserialize(&message_bytes)?;
let at = sealed_sender_v2::compute_authentication_tag(
&our_identity,
&usmc.sender()?.key()?.into(),
Direction::Receiving,
&ephemeral_public,
&encrypted_message_key,
)?;
if !bool::from(authentication_tag.ct_eq(&at)) {
return Err(SignalProtocolError::InvalidSealedSenderMessage(
"sender certificate key does not match authentication tag".to_string(),
));
}
Ok(usmc)
}
}
}
#[derive(Debug)]
pub struct SealedSenderDecryptionResult {
pub sender_uuid: String,
pub sender_e164: Option<String>,
pub device_id: DeviceId,
pub message: Vec<u8>,
}
impl SealedSenderDecryptionResult {
pub fn sender_uuid(&self) -> Result<&str> {
Ok(self.sender_uuid.as_ref())
}
pub fn sender_e164(&self) -> Result<Option<&str>> {
Ok(self.sender_e164.as_deref())
}
pub fn device_id(&self) -> Result<DeviceId> {
Ok(self.device_id)
}
pub fn message(&self) -> Result<&[u8]> {
Ok(self.message.as_ref())
}
}
/// Decrypt a Sealed Sender message `ciphertext` in either the v1 or v2 format, validate its sender
/// certificate, and then decrypt the inner message payload.
///
/// This method calls [`sealed_sender_decrypt_to_usmc`] to extract the sender information, including
/// the embedded [`SenderCertificate`]. The sender certificate (signed by the [`ServerCertificate`])
/// is then validated against the `trust_root` baked into the client to ensure that the sender's
/// identity was not forged.
#[allow(clippy::too_many_arguments)]
pub async fn sealed_sender_decrypt(
ciphertext: &[u8],
trust_root: &PublicKey,
timestamp: Timestamp,
local_e164: Option<String>,
local_uuid: String,
local_device_id: DeviceId,
identity_store: &mut dyn IdentityKeyStore,
session_store: &mut dyn SessionStore,
pre_key_store: &mut dyn PreKeyStore,
signed_pre_key_store: &dyn SignedPreKeyStore,
kyber_pre_key_store: &mut dyn KyberPreKeyStore,
) -> Result<SealedSenderDecryptionResult> {
let usmc = sealed_sender_decrypt_to_usmc(ciphertext, identity_store).await?;
if !usmc.sender()?.validate(trust_root, timestamp)? {
return Err(SignalProtocolError::InvalidSealedSenderMessage(
"trust root validation failed".to_string(),
));
}
let is_local_uuid = local_uuid == usmc.sender()?.sender_uuid()?;
let is_local_e164 = match (local_e164, usmc.sender()?.sender_e164()?) {
(Some(l), Some(s)) => l == s,
(_, _) => false,
};
if (is_local_e164 || is_local_uuid) && usmc.sender()?.sender_device_id()? == local_device_id {
return Err(SignalProtocolError::SealedSenderSelfSend);
}
let mut rng = rand::rngs::OsRng;
let remote_address = ProtocolAddress::new(
usmc.sender()?.sender_uuid()?.to_string(),
usmc.sender()?.sender_device_id()?,
);
let message = match usmc.msg_type()? {
CiphertextMessageType::Whisper => {
let ctext = SignalMessage::try_from(usmc.contents()?)?;
session_cipher::message_decrypt_signal(
&ctext,
&remote_address,
session_store,
identity_store,
&mut rng,
)
.await?
}
CiphertextMessageType::PreKey => {
let ctext = PreKeySignalMessage::try_from(usmc.contents()?)?;
session_cipher::message_decrypt_prekey(
&ctext,
&remote_address,
session_store,
identity_store,
pre_key_store,
signed_pre_key_store,
kyber_pre_key_store,
&mut rng,
)
.await?
}
msg_type => {
return Err(SignalProtocolError::InvalidMessage(
msg_type,
"unexpected message type for sealed_sender_decrypt",
));
}
};
Ok(SealedSenderDecryptionResult {
sender_uuid: usmc.sender()?.sender_uuid()?.to_string(),
sender_e164: usmc.sender()?.sender_e164()?.map(|s| s.to_string()),
device_id: usmc.sender()?.sender_device_id()?,
message,
})
}
#[test]
fn test_lossless_round_trip() -> Result<()> {
let trust_root = PrivateKey::deserialize(&[0u8; 32])?;
// To test a hypothetical addition of a new field:
//
// Step 1: temporarily add a new field to the .proto.
//
// --- a/rust/protocol/src/proto/sealed_sender.proto
// +++ b/rust/protocol/src/proto/sealed_sender.proto
// @@ -26,3 +26,4 @@ message SenderCertificate {
// optional bytes identityKey = 4;
// optional ServerCertificate signer = 5;
// + optional string someFakeField = 999;
// }
//
// Step 2: Add `some_fake_field: None` to the above construction of
// proto::sealed_sender::sender_certificate::Certificate.
//
// Step 3: Serialize and print out the new fixture data (uncomment the following)
//
// let mut rng = rand::rngs::OsRng;
// let server_key = KeyPair::generate(&mut rng);
// let sender_key = KeyPair::generate(&mut rng);
//
// let server_cert =
// ServerCertificate::new(1, server_key.public_key, &trust_root, &mut rng)?;
//
// let sender_cert = proto::sealed_sender::sender_certificate::Certificate {
// sender_uuid: Some("aaaaaaaa-7000-11eb-b32a-33b8a8a487a6".to_string()),
// sender_e164: None,
// sender_device: Some(1),
// expires: Some(31337),
// identity_key: Some(sender_key.public_key.serialize().to_vec()),
// signer: Some(server_cert.to_protobuf()?),
// some_fake_field: Some("crashing right down".to_string()),
// };
//
// eprintln!("<SNIP>");
// let serialized_certificate_data = sender_cert.encode_to_vec();
// let certificate_data_encoded = hex::encode(&serialized_certificate_data);
// eprintln!("let certificate_data_encoded = \"{}\";", certificate_data_encoded);
//
// let certificate_signature = server_key.calculate_signature(&serialized_certificate_data, &mut rng)?;
// let certificate_signature_encoded = hex::encode(certificate_signature);
// eprintln!("let certificate_signature_encoded = \"{}\";", certificate_signature_encoded);
// Step 4: update the following *_encoded fixture data with the new values from above.
let certificate_data_encoded = "100119697a0000000000002221056c9d1f8deb82b9a898f9c277a1b74989ec009afb5c0acb5e8e69e3d5ca29d6322a690a2508011221053b03ca070e6f6b2f271d32f27321689cdf4e59b106c10b58fbe15063ed868a5a124024bc92954e52ad1a105b5bda85c9db410dcfeb42a671b45a523b3a46e9594a8bde0efc671d8e8e046b32c67f59b80a46ffdf24071850779bc21325107902af89322461616161616161612d373030302d313165622d623332612d333362386138613438376136ba3e136372617368696e6720726967687420646f776e";
let certificate_signature_encoded = "a22d8f86f5d00794f319add821e342c6ffffb6b34f741e569f8b321ab0255f2d1757ecf648e53a3602cae8f09b3fc80dcf27534d67efd272b6739afc31f75c8c";
// The rest of the test should be stable.
let certificate_data = hex::decode(certificate_data_encoded).expect("valid hex");
let certificate_signature = hex::decode(certificate_signature_encoded).expect("valid hex");
let sender_certificate_data = proto::sealed_sender::SenderCertificate {
certificate: Some(certificate_data),
signature: Some(certificate_signature),
};
let sender_certificate =
SenderCertificate::deserialize(&sender_certificate_data.encode_to_vec())?;
assert!(sender_certificate.validate(
&trust_root.public_key()?,
Timestamp::from_epoch_millis(31336)
)?);
Ok(())
}